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I. Introduction aux splines 
 
Les splines cubiques sont un outil mathématique puissant utilisé pour l'interpolation, c'est-à-dire 
pour estimer des valeurs entre des points de données connus. Elles sont particulièrement utiles parce 
qu'elles produisent des courbes lisses et continuelles qui passent par tous les points donnés, tout en 
minimisant l'effet de sursaut qui peut survenir avec d'autres méthodes d'interpolation comme les 
polynômes de degré élevé. 
 
Une spline est une fonction définie par morceaux, où chaque morceau est une fonction polynomiale. 
Les splines cubiques sont des splines où chaque morceau est un polynôme de degré 3 (c'est-à-dire 
cubique). 
 
Soient (𝑛 + 1) points d’interpolation de coordonnées (𝑥! 	, 𝑓(𝑥!)	) pour 𝑖	 = 	0, 1, 2,·	·	·	, 𝑛. 

Le but est de construire une fonction 𝑆(𝑥) telle que : 

• 𝑆(𝑥)  passe par chaque point de données, c'est-à-dire 𝑆(𝑥!) = 𝑦! pour chaque 𝑖. 
• 𝑆(𝑥) est suffisamment lisse, c'est-à-dire que ses première et deuxième dérivées sont continues 

sur l'intervalle des points de données. 

II. Construction 
 
Pour chaque sous-intervalle [𝑥! , 𝑥!"#], une spline cubique est définie comme un polynôme cubique : 
 

𝑃!(𝑥) = 𝑎!(𝑥 − 𝑥!)$ + 𝑏!(𝑥 − 𝑥!)% + 𝑐!(𝑥 − 𝑥!) + 𝑑! 					(1) 
 
où 𝑎! , 𝑏! , 𝑐! et 𝑑! sont des coefficients à déterminer pour chaque intervalle [𝑥! , 𝑥!"#]. 
 
Conditions de continuité et de lissage 
Pour garantir que la spline est continue et lisse, les conditions suivantes sont imposées : 

1. Continuité en chaque point : Les polynômes cubiques doivent passer par les points de 
données : 

𝑃!(𝑥!) = 𝑓(𝑥!)	 et 𝑃!(𝑥!"#) = 𝑓(𝑥!"#) pour 𝑖	 = 	1, 2,·	·	·	, 𝑛 − 1	; 
 

2. Continuité des premières dérivées : Les dérivées premières doivent être continues en 
chaque point 𝑥! : 

𝑃!&(𝑥!) = 𝑃!"#& (𝑥!) pour 𝑖	 = 	1, 2,·	·	·	, 𝑛 − 1	; 
 

3. Continuité des deuxièmes dérivées : Les dérivées secondes doivent être continues en 
chaque point 𝑥! : 

𝑃!&&(𝑥!) = 𝑃!"#&& (𝑥!"#) pour 𝑖	 = 	1, 2,·	·	·	, 𝑛 − 1	; 
�   

4. Condition aux bords (optionnelle) : Selon les cas, une condition supplémentaire peut 
être imposée aux extrémités. On parle d’une condition naturelle :  



 

 

𝑃#&&(𝑥') = 𝑃(&&(𝑥() = 0 
On définit par la suite la spline cubique qui passe par ces points d’interpolation par: 
 

𝑆(𝑥) = 9

𝑃'(𝑥)	𝑠𝑖	𝑥 ∈ [𝑥', 𝑥#]
𝑃#(𝑥)	𝑠𝑖	𝑥 ∈ [𝑥#, 𝑥%]

⋮
𝑃()#(𝑥)	𝑠𝑖	𝑥 ∈ [𝑥()#, 𝑥(]

 

 
Pour trouver ces polynômes, plutôt que de partir des coefficients de celui-ci définis en (1), nous 
allons partir de sa dérivée seconde pour des raison pratique. 
Nous savons que 𝑃!(𝑥) est de degré 3, donc, sa dérivée seconde est une fonction linéaire de 𝑥. 
En utilisant une interpolation de Lagrange, on peut écrire sur l’intervalle [𝑥! , 𝑥!"#]: 
 

𝑃!&&(𝑥) = 𝑓!&&
𝑥 − 𝑥!"#
𝑥! − 𝑥!"#

+ 𝑓!"#&&
𝑥 − 𝑥!
𝑥!"# − 𝑥!

= −𝑓!&&
𝑥 − 𝑥!"#

ℎ!
+ 𝑓!"#&&

𝑥 − 𝑥!
ℎ!

 

avec ℎ! = 𝑥!"# − 𝑥!. 
 
On intègre ensuite 2 fois par rapport à x, et il va apparaître 2 constantes d’intégrations 𝐴! et 𝐵! 	: 

𝑃!(𝑥) = −𝑓!&&
(𝑥 − 𝑥!"#)$

6ℎ!
+ 𝑓!"#&&

(𝑥 − 𝑥!)$

6ℎ!
+ 𝐴!(𝑥 − 𝑥!"#) + 𝐵!(𝑥 − 𝑥!) 

 
En utilisant les conditions d’interpolations suivantes : 𝑃!(𝑥!) = 𝑓(𝑥!) = 𝑓! 	 et 𝑃!(𝑥!"#) = 𝑓(𝑥!"#) =
𝑓!"# on trouve : 

𝐴! = − *!
+!
+ 𝑓!&&

+!
,
 et 𝐵! =

*!"#
+!
− 𝑓!"#&&

+!
,
 

 
Nous avons donc désormais : 
 

𝑃!(𝑥) = −𝑓!&&
(𝑥 − 𝑥!"#)$

6ℎ!
+ 𝑓!"#&&

(𝑥 − 𝑥!)$

6ℎ!
+ (−

𝑓!
ℎ!
+ 𝑓!&&

ℎ!
6 )(𝑥 − 𝑥!"#) + (

𝑓!"#
ℎ!

− 𝑓!"#&&
ℎ!
6 )(𝑥 − 𝑥!) 

pour 𝑖 = 0,… , 𝑛 − 1. 
 
Nous allons utiliser maintenant la condition de continuité des dérivées premières  
𝑃!&(𝑥!) = 𝑃!)#& (𝑥!) pour 𝑖 = 1,… , 𝑛 − 1. 
 

𝑃!&(𝑥) = −𝑓!&&
(𝑥 − 𝑥!"#)%

2ℎ!
+ 𝑓!"#&&

(𝑥 − 𝑥!)%

2ℎ!
−
𝑓!
ℎ!
+ 𝑓!&&

ℎ!
6 +

𝑓!"#
ℎ!

− 𝑓!"#&&
ℎ!
6  

𝑃!)#& (𝑥) = −𝑓!)#&&
(𝑥 − 𝑥!)%

2ℎ!)#
+ 𝑓!&&

(𝑥 − 𝑥!)#)%

2ℎ!)#
−
𝑓!)#
ℎ!)#

+ 𝑓!)#&&
ℎ!)#
6 +

𝑓!
ℎ!)#

− 𝑓!&&
ℎ!)#
6  

 
Ce qui donne : 

−𝑓!&&
(𝑥! − 𝑥!"#)%

2ℎ!
−
𝑓!
ℎ!
+ 𝑓!&&

ℎ!
6 +

𝑓!"#
ℎ!

− 𝑓!"#&&
ℎ!
6 = 𝑓!&&

(𝑥! − 𝑥!)#)%

2ℎ!)#
−
𝑓!)#
ℎ!)#

+ 𝑓!)#&&
ℎ!)#
6 +

𝑓!
ℎ!)#

− 𝑓!&&
ℎ!)#
6  

 

⟺−𝑓!&&
ℎ!
2 −

𝑓!
ℎ!
+ 𝑓!&&

ℎ!
6 +

𝑓!"#
ℎ!

− 𝑓!"#&&
ℎ!
6 = 𝑓!&&

ℎ!)#
2 −

𝑓!)#
ℎ!)#

+ 𝑓!)#&&
ℎ!)#
6 +

𝑓!
ℎ!)#

− 𝑓!&&
ℎ!)#
6  



 

 

 

⟺−𝑓!&&
ℎ!
2 + 𝑓!

&& ℎ!
6 − 𝑓!"#

&& ℎ!
6 − 𝑓!

&& ℎ!)#
2 − 𝑓!)#&&

ℎ!)#
6 + 𝑓!&&

ℎ!)#
6 = −

𝑓!)#
ℎ!)#

+
𝑓!
ℎ!)#

+
𝑓!
ℎ!
−
𝑓!"#
ℎ!

 

⟺−𝑓!)#&&
ℎ!)#
6 − 𝑓!&&

ℎ!
3 − 𝑓!

&& ℎ!)#
3 − 𝑓!"#&&

ℎ!
6 = −

𝑓!)#
ℎ!)#

+
𝑓!
ℎ!)#

+
𝑓!
ℎ!
−
𝑓!"#
ℎ!

 

 

⟺ 𝑓!)#&&
ℎ!)#
6 + 𝑓!&&(

ℎ! + ℎ!)#
3 ) + 𝑓!"#&&

ℎ!
6 =

𝑓!"# − 𝑓!
ℎ!

−
𝑓! − 𝑓!)#
ℎ!)#

 

 
On obtient ainsi 𝑛 − 1 équations linéaires pour les 𝑛 + 1 inconnues que sont les 𝑓!&&. 
Pour avoir deux équations supplémentaires, nous allons utiliser des conditions aux extrémités 𝑥' et 
𝑥( sur les dérivées secondes : 

𝑓'&& = 𝑎 
𝑓(&& = 𝑏 

Si 𝑎 =b=0, on parle de spline naturelle ou de spline libre. 
 
On peut supposer aussi connu les pentes du polynôme d’interpolation aux deux extrémités. 
 

𝑃'&(𝑥') = 𝑓'& 
𝑃()#& (𝑥() = 𝑓(& 

 
 

𝑃'&(𝑥') = −𝑓'&&
(𝑥' − 𝑥#)%

2ℎ'
+ 𝑓#&&

(𝑥' − 𝑥')%

2ℎ'
−
𝑓'
ℎ'
+ 𝑓'&&

ℎ'
6 +

𝑓#
ℎ'
− 𝑓#&&

ℎ'
6 	

= −𝑓'&&
ℎ'
2 −

𝑓'
ℎ'
+ 𝑓'&&

ℎ'
6 +

𝑓#
ℎ'
− 𝑓#&&

ℎ'
6 = 𝑓'& 

⟺−𝑓'&&
ℎ'
3 − 𝑓#&&

ℎ'
6 = −

𝑓# − 𝑓'
ℎ'

+ 𝑓'& 

 

𝑃()#& (𝑥() = −𝑓()#&& (𝑥( − 𝑥()%

2ℎ()#
+ 𝑓(&&

(𝑥( − 𝑥()#)%

2ℎ()#
−
𝑓()#
ℎ()#

+ 𝑓()#&& ℎ()#
6 +

𝑓(
ℎ()#

− 𝑓(&&
ℎ()#
6 	

= 𝑓(&&
ℎ()#
2 −

𝑓()#
ℎ()#

+ 𝑓()#&& ℎ()#
6 +

𝑓(
ℎ()#

− 𝑓(&&
ℎ()#
6 = 𝑓(& 

⟺ 𝑓(&&
ℎ()#
3 + 𝑓()#&& ℎ()#

6 = −
𝑓( − 𝑓()#
ℎ()#

+ 𝑓(& 

 
L’ensemble de ces 𝑛 + 1 équations ainsi obtenues peut se mettre sous forme matricielle : 

𝐴𝐹 = 𝐵 
 
avec : 



 

 

𝐵 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

−𝑓# − 𝑓'ℎ'
+ 𝑓'&

𝑓% − 𝑓#
ℎ#

− 𝑓# − 𝑓'ℎ'
⋮

𝑓!"# − 𝑓!
ℎ!

− 𝑓! − 𝑓!)#ℎ!)#
⋮

− 𝑓( − 𝑓()#ℎ()#
+ 𝑓(& ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

	; 	𝐹 =

⎝

⎜
⎜
⎛

𝑓'&&
𝑓#&&
⋮
𝑓!&&
⋮
𝑓(&&⎠

⎟
⎟
⎞
	; 

 
 
 

𝐹 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛
−
ℎ'
3

−
ℎ'
6

0

ℎ'
6

ℎ# + ℎ'
3

ℎ#
6

0
ℎ#
6

ℎ% + ℎ#
3

… 0 0
0 ⋮ 0
ℎ%
6 ⋮ 0

0 0 0
⋮ ⋮ ⋮
0 0 …

⋮ ⋮ 0
ℎ()%
6

ℎ()# + ℎ()%
3

ℎ()#
6

0
ℎ()#
6

ℎ()#
3 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 
 
 

−
ℎ'
3  −

ℎ'
6  0 … 0 0 

ℎ'
6  

ℎ# + ℎ'
3  

ℎ#
6  ⋮ ⋮ ⋮ 

0 ℎ#
6  

ℎ% + ℎ#
3  

ℎ%
6  ⋮ ⋮ 

0 0 ⋮ ⋮ ⋮ 0 

⋮ ⋮ ⋮ ℎ()%
6  

ℎ()# + ℎ()%
3  

ℎ()#
6  

0 … … 0 ℎ()#
6  

ℎ()#
3  

 
On remarque que l’on obtient une matrice tridiagonale constituée d’une diagonale principale, d’une 
diagonale inférieure et d’une diagonale supérieure. 
 
Nous allons voir comme résoudre un système avec une matrice tridiagonale et avoir accès au 𝑓!&& 
qui nous permettrons de trouver nos polynômes. 
 

III. Résolution d’un système linéaire avec une matrice tridiagonale 
 



 

 

Posons un système linéaire se mettant sous la forme matricielle : 𝐴𝑋 = 𝑆, où 𝐴 est une matrice 
tridiagonale : 

𝐴 =

⎝

⎜
⎜
⎛

𝑎# 𝑐# 0
𝑏% 𝑎% 𝑐%
0 𝑏$ 𝑎$

…				 			… 				0
0			 …					 				0
𝑐$ ⋮ 				0

0 ⋱ ⋱
0 ⋱ ⋱
0 0 …

⋱ ⋱ 0
𝑏()# 𝑎()# 𝑐()#
… 𝑏( 𝑎( ⎠

⎟
⎟
⎞

 

Nous allons factoriser 𝐴 pour le mettre sous la forme 𝐴 = 𝐿𝑈 avec 𝐿 une matrice triangulaire inférieur 
et 𝑈 une matrice triangulaire supérieur : 

𝐿𝑈 =

⎝

⎜
⎜
⎛

1 0 0
𝑙% 1 0
0 𝑙$ 1

… … 		0
0			 …	 		0
0 ⋮ 		0

0 ⋱ ⋱
0 ⋱ ⋱
0 0 …

⋱ ⋱ 0
𝑙()# 1 0
… 𝑙( 1⎠

⎟
⎟
⎞

⎝

⎜
⎜
⎛

𝑣# 𝑢# 0
0 𝑣% 𝑢%
0 0 𝑣$

… … 		0
0			 …	 		0
𝑢$ ⋮ 		0

0 ⋱ ⋱
0 ⋱ ⋱
0 0 …

⋱ ⋱ 0
0 𝑣()# 𝑢()#
… 0 𝑣( ⎠

⎟
⎟
⎞

 

 
L’indentification des coefficients se fait assez simplement : 

𝑎# = 𝑣# 
𝑐# = 𝑢# 

𝑐! = 𝑢! 		𝑎𝑣𝑒𝑐	1 ≤ 𝑖 ≤ 𝑛 − 1 
𝑏! = 𝑙!𝑣!)#	𝑎𝑣𝑒𝑐	2 ≤ 𝑖 ≤ 𝑛 

𝑎! = 𝑙!𝑢!)# + 𝑣! 	𝑎𝑣𝑒𝑐	2 ≤ 𝑖 ≤ 𝑛 
 
On obtient ainsi les coefficients rechercher avec un algorithme en 5 étapes : 
 

(1)			𝑣# = 𝑎# 
(2)			𝑢# = 𝑐# 
(3)			𝑢! = 𝑐! 			𝑎𝑣𝑒𝑐	1 ≤ 𝑖 ≤ 𝑛 − 1 

(4)			𝑙! =
𝑏!
𝑣!)#

			𝑎𝑣𝑒𝑐	2 ≤ 𝑖 ≤ 𝑛 

(5)			𝑣! = 𝑎! − 𝑙!𝑢!)#			𝑎𝑣𝑒𝑐	2 ≤ 𝑖 ≤ 𝑛 
 
Résoudre notre système 𝐴𝑋 = 𝐵 reviens désormais à résoudre le système 𝐿𝑈𝑋 = 𝑆, qui se fait en 
deux étapes : 𝐿𝑌 = 𝑆	(1) et 𝑈𝑋 = 𝑌	(2)	selon la méthode suivante : 
 

(1)			𝑦# = 𝑠# 
(1)			𝑦! = 𝑠! − 𝑙!𝑦!)#			𝑎𝑣𝑒𝑐	2 ≤ 𝑖 ≤ 𝑛 
(2)			𝑥( =

𝑦!
𝑣(

 

(2)			𝑥! =
𝑦! − 𝑢!𝑥!

𝑣!
			𝑎𝑣𝑒𝑐	𝑛 − 1 ≥ 𝑛 ≥ 1 

 
 

IV. TP9 Splines cubiques 
 



 

 

À l’aide de ce cours, vous allez créer un programme qui permettra de tracé les splines cubiques 
passant par les points (0 ; 2), (1 ; -2), (2 ; 1), (3, -1) et (4 ; 2). 
 
Vous suivrez bien la méthode du cours. 
 
 
 
 


